Buscar

.: MATEMATICALIA :.
 revista digital de divulgación matemática
     proyecto consolider ingenio mathematica 2010
     ISSN: 1699-7700

Buscar
Logo Matematicalia.net
Matematicalia
Portada
Presentación
Comité Editorial
Comité Asesor
Cómo Publicar
Contenidos
Agenda
Noticias
Noticias i-MATH
Novedades Editoriales
MatePosters
Mirada Matemática
Momentos Matemáticos
Usuarios de IE9

IMPORTANTE: Para visualizar correctamente bajo Internet Explorer 9 los números publicados en HTML, es necesario tener activada la opción de compatibilidad con versiones anteriores del navegador.
Números Publicados
Vol. 7, no. 4 (dic. 2011)
Vol. 7, no. 3 (sep. 2011)
Vol. 7, no. 2 (jun. 2011)
Vol. 7, no. 1 (mar. 2011)
Vol. 6, no. 4 (dic. 2010)
Vol. 6, no. 3 (sep. 2010)
Vol. 6, no. 2 (jun. 2010)
Vol. 6, no. 1 (mar. 2010)
Vol. 5, no. 5 (dic. 2009)
Vol. 5, no. 4 (oct. 2009)
Vol. 5, no. 3 (jun. 2009)
Vol. 5, no. 2 (abr. 2009)
Vol. 5, no. 1 (feb. 2009)
Vol. 4, no. 5 (dic. 2008)
Vol. 4, no. 4 (oct. 2008)
Vol. 4, no. 3 (jun. 2008)
Vol. 4, no. 2 (abr. 2008)
Vol. 4, no. 1 (feb. 2008)
Vol. 3, nos. 4-5 (oct.-dic. 2007)
Vol. 3, no. 3 (jun. 2007)
Vol. 3, no. 2 (abr. 2007)
Vol. 3, no. 1 (feb. 2007)
Vol. 2, no. 5 (dic. 2006)
Vol. 2, no. 4 (oct. 2006)
Vol. 2, no. 3 (jun. 2006)
Vol. 2, no. 2 (abr. 2006)
Vol. 2, no. 1 (feb. 2006)
Vol. 1, no. 4 (dic. 2005)
Vol. 1, no. 3 (oct. 2005)
Vol. 1, no. 2 (jun. 2005)
Vol. 1, no. 1 (abr. 2005)
Logo y Web i-MATH
 
Portada arrow Vol. 4, no. 1 (feb. 2008) arrow Pasatiempos

Pasatiempos Imprimir E-Mail
Escrito por Redacción Matematicalia   
lunes, 16 de febrero de 2009
Pasatiempos febrero 2008

Recibido: sábado, 01 de marzo de 2008




¿Qué pasaría si... (*)

 


Pinche sobre una fórmula para ampliarla. Vuelva a pinchar sobre ella para reducirla, o pinche manteniendo pulsada la tecla [shift] para reducir todas las que permanezcan ampliadas.


… un vitivinicultor, sabiendo que el sabor y el color se concentran en la piel de la uva, quisiera cultivar una variedad que acentúe las dos características? ¿Debería preferir una uva de grano más pequeño o de grano más grande?

 

 

Image

 

 

[La solución, en el próximo número]

 

Solución al problema anterior

 

…cortáramos un cubo con un plano? ¿Podríamos obtener un triángulo semejante a cualquier triángulo dado?

 

Image



Respuesta: Recordemos en primer lugar que dos triángulos son semejantes si los cocientes de los lados correspondientes son todos iguales a un número fijo. Por ejemplo, la Figura 1 muestra dos triángulos semejantes:

 

Image

 

Figura 1.

 

Estos dos triángulos satisfacen las relaciones

 

 

 

Una vez hecha esta aclaración, la respuesta a la pregunta es que no es posible obtener un triángulo semejante a cualquier triángulo dado. Por ejemplo, veamos que este proceso de cortar el cubo con un plano no nos puede dar un triángulo recto. En la Figura 2 se ve un posible corte.

 

 

Image

 

Figura 2.

 

Los tres triángulos que aparecen en otras tantas caras del cubo son rectos, por lo cual sabemos que se cumplen las siguientes relaciones:

 

 

 

Si además queremos que se cumpla, digamos, la relación , usando las tres relaciones anteriores podemos escribir:

 

 

 

de donde resulta , lo cual está claro que no puede ser. Desde luego, llegaríamos a una contradicción semejante si supusiéramos que el lado    ó el   es la hipotenusa del triángulo.

 

En este tema de cortar un cubo con un plano se pueden hacer muchas otras preguntas. Por ejemplo, ¿es posible obtener triángulos isósceles o equiláteros?, ¿es posible obtener un cuadrado o un rectángulo?, ¿se puede tener una sección pentagonal o hexagonal?, ¿qué polígonos regulares se pueden obtener?

 

Una manera divertida de experimentar es cortando patatas en forma de cubos y luego cortando los cubos de diferentes maneras. Los cortes, sumergidos en pintura, se convierten en sellos que pueden forman efectos interesantes sobre una hoja de papel.

 

 

Image

 

 

Sobre la autora

Image

Josefina (Lolina) Álvarez es Professor of Mathematics en New Mexico State University (USA). Especialista en análisis armónico y funcional, se doctoró en Matemáticas por la Universidad de Buenos Aires (Argentina), bajo la dirección de A.P. Calderón. Ha ocupado diversos puestos y cargos académicos en la Universidad de Buenos Aires y en las estadounidenses de Princeton, Chicago, Florida Atlantic University y New Mexico. Ha sido investigadora del CONICET (Argentina). Miembro de la Unión Matemática Argentina, Mathematical Association of America y American Mathematical Society, formó parte del Committee on Committees de esta última entre 1999 y 2002. Ha dictado numerosas conferencias en congresos y sesiones especiales e impartido seminarios en Alemania, Argentina, Bélgica, Brasil, Canadá, Colombia, España, Estados Unidos, México, Perú, Polonia, Suecia y Venezuela. Ha pertenecido y en varias ocasiones presidido los comités organizadores de distintos congresos y minisimposia. Ha ejercido como evaluadora para prestigiosas revistas especializadas. Desde 2002 hasta 2007 ha sido Editora Asociada del Rocky Mountain Journal of Mathematics. Autora o coautora de numerosos artículos científicos y varias monografías en análisis armónico y funcional y directora de cinco tesis doctorales, ha desarrollado asimismo una intensa actividad en el campo de la educación matemática, habiendo recibido diversos galardones a la excelencia docente.





(*) Sección a cargo de Josefina Álvarez.

 
 
© 2005 - ∞ .: MATEMATICALIA :.
Todos los derechos reservados.
Joomla! es Software Libre distribuido bajo licencia GNU/GPL.